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ABSTRACT 

The U.S. Coast Guard has deployed several hundred port patrol vessels to protect 

U.S. Navy ships and other high-value assets in ports world-wide.  Each vessel has an 

armed crew of four, is relatively fast, and features a simple surface search radar, radios, 

and a machine gun.  These vessels coordinate surveillance patrols in groups of two or 

four, perhaps working with shore-based radar.  We seek to advantageously position these 

vessels, and perhaps shore-based radar too, to minimize the probability that an intelligent 

adversary in one or more speed-boats will evade detection while mounting an attack.  

Attackers can use elevated obstructions to our radar detection in their attack paths, and 

ports feature many such restrictions to navigation and observation.  We make a key, but 

realistic assumption that complicates planning:  we assume the attackers will see or be 

told of our defensive positions and capabilities in advance of mounting their attack.  We 

demonstrate our defender-attacker optimization with a fictitious port, and with Los 

Angeles-Long Beach, Hong Kong, U.S. Navy 5-th Fleet in Bahrain, and the Al Basra oil 

terminal.  In cases we analyze, we can almost certainly detect any attack, even though the 

attacker, observing our pre-positions, plans clever, evasive attack tracks. 
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EXECUTIVE SUMMARY 

We introduce a new planning tool for locating shore radar stations and mobile 

picket boats with radar to maximize the probability that one or more speedboat attackers 

will be discovered before reaching any of a set of defended assets, such as pier-side U.S. 

Navy ships or other high-value maritime assets at risk. The distinguishing contribution 

here is that our planning tool explicitly recognizes that the attackers can be expected to 

have prior knowledge of our defensive disposition, either through shore observers, 

satellite imagery, or on-board radar threat detectors: we assume the attackers will observe 

our defensive preparations, and respond accordingly. There is no other such decision 

support tool available today for maritime domain awareness. 

Our motivation derives from the “Maritime Domain Awareness Concept” 

published by the Chief of Naval Operations on May 29, 2007, declaring the U.S. Navy’s 

understanding and commitment to National Security Presidential Directive 41 “Maritime 

Security Policy,” published on December 21, 2004. Maritime domain awareness is a 

worldwide problem, with shared responsibilities among allied governments and private 

enterprise.  

We demonstrate how to position SAFE Defender Class picket ships optimally to 

protect high-value defended assets.  We can also locate and fuse shore-based radar 

returns with those from our boats. We use standard radar equations for our detection 

predictions, but can accommodate any alternate means of assessing the probability of 

detection. Our model also represents any restriction to navigation, such as shoreline, 

islands, and breakwaters, with planner-specified fidelity; these obstructions may also 

obstruct our radars, so we use ray tracing to gauge whether or not an attacker can be 

detected from any defender position.  

 

 

 



 xviii

While detecting and alarming attacks is our primary goal, having a picket 

platform intercept a detected attack may or may not be possible, due to the relative speeds 

of the defending pickets and the attacker craft. In our scenario we use the SAFE Defender 

class boat which operates at a maximum speed of 46 knots. Speed matters, and an 

attacker with a significant speed advantage poses a vexing defense problem. 
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I. INTRODUCTION  

A. PROBLEM STATEMENT 

1. What is the Problem? 

Maritime port security is a newly-sharpened focus for the United States (U.S.) 

Congress, the Department of Homeland Security (DHS), and the U.S. Navy (USN). The 

U.S. deems maritime security a “vital national interest” (DHS, 2005, p. 1). Current 

maritime threats vary from the possible hijacking of a commercial vessel to ramming an 

explosive-packed small boat into a ship similar to the 2000 attack on the USS Cole 

(Carafano, 2007, p. 2).  

Maritime ports are “sprawling, easily accessible by water and land, close to 

crowded metropolitan areas, and interwoven with complex transportation networks” 

(DHS, 2005, p. 9). Such ports are highly susceptible to enemies seeking multiple “high 

impact” objectives to attack. The Al-Qaida terrorist organization has demonstrated the 

desire and capability of carrying out such an attack (MI5, 2007).  

A major maritime threat is exemplified by the Sea Tigers, a maritime detachment 

of the Liberation Tigers of Tamil Eelam (LTTE). The LTTE, a rebel organization in Sri 

Lanka, has fought for its independence since 1976. They demonstrate very sophisticated 

tactics in attacking Sri Lankan Naval and commercial ships (Murphy, 2006). Their first 

suicide boat attack was in 1990. In 1994, they managed to sink a Sri Lankan Navy 

warship. Their methods range from utilizing multiple boats (see Figures 1 and 2) 

simultaneously to the employment of distracting fire from shore to mount a coordinated 

attack. They continue to pose a significant threat and have carried out attacks as recently 

as May 2006 (Murphy, 2006). 
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Figure 1.   Archival snapshot of a high-speed boat in a training video captured from 
the Liberation Tigers of Tamil Eelam (LTTE) (From: Murphy, 2006). 

 

Figure 2.   Archival snapshot of a high-speed boat in a training video captured from 
the Liberation Tigers of Tamil Eelam (LTTE) (From: Murphy, 2006). 
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We anticipate a determined adversary who plans to infiltrate a maritime port for 

an attack. We seek a systematic way to assign defensive pickets to detect and alarm such 

an attack, even though such defensive preparations will be visible to the attacker. Optimal 

placement of sensor platforms reduces the probability of a successful attack. For our 

purposes, a first, single successful enemy infiltration is the signal event we wish to alarm. 

Subsequent to such a first event, interdicted or not, we assume that defenses would 

qualitatively change. 

B. MOTIVATION 

1. Why is the Problem Important? 

 

Figure 3.   USS Cole after the deadly 2001 attack in Port of Yemen killing 17 Sailors 
(From: Murphy, 2006). 

The world economy is dependent on maritime commerce, which accounts for 

approximately 80% of the world trade (DHS, 2005, p. 1). Today there are 30 mega-ports 

worldwide, which almost all cargo ships pass through in the intricate trade network 

(Caldwell, 2007, p. 1). A disruption in any one of these mega-ports, even for a short time, 

could have a devastating impact on the flow of goods and oil throughout the world.  

In the aftermath of the September 11, 2001 attacks, Congress enacted two major 

bills specifically addressing maritime security. The Maritime Transportation Security Act 
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(MTSA) took effect in November 2002. It requires ports to develop security plans and to 

identify risk areas (Caldwell, 2007, p. 1). The Security and Accountability for Every Port 

Act (SAFE Port Act), passed in October 2006, is a MTSA amendment, addressing some 

security issues not previously covered. It also includes provisions that incorporate 

international ports as part of the overall security plan, recognizing that maritime security 

is not a one-nation concern, but rather part of a complex intertwined global network 

(Caldwell, p. 2). 

National Security Presidential Directive (NSPD) 41 establishes policy and 

guidelines for all U.S. agencies and stakeholders in maritime security. At the same time it 

defines Maritime Domain Awareness (MDA) as the “effective understanding of anything 

associated with global maritime domain that could impact the security, safety, economy, 

or environment of the United States” (NSPD-41, 2004). Consequently, in May, the MDA 

Concept was published by the Chief of Naval Operations. The United States Navy (USN) 

reinforces NSPD-41 by declaring MDA is a world-wide problem, with shared 

responsibilities among allied governments and private enterprise. The MDA Concept also 

recognizes that simply adding more sensors and defensive assets does not suffice 

(NMDAC, 2007). 

The economic impact of a single attack on one mega-port leading to degradation 

of throughput or even a complete port closure could be dire. For example, the ports of 

Los Angeles and Long Beach account for approximately 40% of all cargo container 

traffic entering the U.S. (The Caltrade Report, 2007). The longshoremen strike of 2002 

lasted for just ten days, but has been estimated to have cost to the U.S. economy 

approximately $2 billion a day (Isidore, 2002).  

Agencies responsible for maritime security include the U.S. Customs and Border 

Protection, the Transportation Security Administration, U.S. Coast Guard, and the U.S. 

Navy. DHS has funded a combined total of $3.8 billion for these activities from FY 2006 

to FY 2008 alone (DHS, 2007, p. 19). Considerable investments are being made to 

develop new technologies to aid maritime security. These range from the Protector 

Unmanned Surface Vessels (USV) (JFS, 2008) to the Raytheon-developed Athena 

system that integrates existing sensors to provide decision makers with real-time 
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situational awareness (Weisman, 2005). USCG has also acquired approximately 700 

SAFE Defender Class boats in order to fulfill the maritime security requirement 

mandated by the SAFE port act (Jane’s, 2005). The USN has reestablished its riverine 

forces and equipped them with SAFE Small Unit Riverine Craft (SURC). 

2. How Will the Problem be Solved without Our Involvement? 

The burden of overall port security falls on the U.S. Coast Guard (USCG, 2005). 

The Coast Guard has established Area Maritime Security Committees (AMSC) involving 

all the different agencies and authorities at each port, and has created local operation 

centers to improve information sharing and coordination of assets (Caldwell, 2007, p. 5). 

At the same time, the U.S. Navy has expanded its operational focus from blue water to 

littoral waters as well. They are tasked with establishing ties with international allies to 

enhance MDA (NMDAC, 2008, p. 2).  

The National Strategy for Maritime Security (NSMS) [2005] stipulates a layered 

security combining the capabilities of the different stakeholders of each port (DHS 2005, 

p. 20). This layered defense affords decision makers multiple points from which to react 

to any potential threat and perhaps serve as deterrence to any enemy. The physical 

protection of a port from land and sea is still the foundation, and divides a port into 

different enforcement zones and vessel movement control areas (DHS, 2005, p. 21).  

The U.S. Coast Guard has employed a three-tiered Maritime Security (MARSEC) 

alert level that mimics the Homeland Security Advisory System (DHS, 2002) with Level 

1 being the lowest and Level 3 the highest. The MARSEC addresses all aspects of 

maritime threats from ports to critical infrastructure located near sovereign waters. The 

Coast Guard sets preplanned responses for each level (USCG, 2007, p. 1). 

Prior to September 11, 2001, the U.S. Coast Guard employed Port Security Units 

(PSU) comprised of mostly reserve personnel. They were not assigned to specific ports 

but could deploy within 24 hours and become fully-operational within 96 hours with a 

self-sustained capability of 30 days. Each unit had small boats that are easily deployable 

(USCG, 2004, p. 1). 
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Post 9/11 Port Security Units comprise the bulk of the USCG maritime defense 

teams. They operate in two postures depending on the threat level and manning: either 

with four boats on duty allowing two boats to be on station at all times, or with six boats 

on duty and four boats always on station. The two other boats not on station act as a 

standby or shuttle boat and a 24-hour maintenance boat (USCG, 2004, p. 4). Patrol times 

can vary from four to six hours. Disposition of boats is left to the judgment to the Tactical 

Action Officer (TAO) who is delegated by the Commanding Officer (CO) (USCG, 2004, 

p. 3). Employment and tactics depend heavily on the CO and TAO personal experience. 

In accordance with the MTSA of 2002, Maritime Safety and Security Teams 

(MSST) have been created by the Coast Guard to fill the security gaps at major U.S. 

ports. The MSST are rapidly-deployable teams comprised of 75 active duty personnel 

trained in advanced tactical boat operations, anti-terrorism, and force protection. 

Currently, there are 14 teams based in some of the major U.S. ports (USCG, 2005).  

Current security measures include patrol vessels, radars, container scanners, and 

patrol cars and trucks. Activities include land and water security patrols, boarding of 

suspected vessels and enforcement of fixed security zones. The intensity of the activities 

varies in accordance with MARSEC level (Caldwell, 2007, p. 11). Command and control 

of these operations are conducted from 35 sector inter-agency command centers covering 

the entire United States. These centers facilitate the gathering and dissemination of 

information to all agencies involved for a given port region. Twenty-four of these sectors 

need to upgrade their facilities at a cost of $260 million in order to meet the SAFE Port 

Act requirements, including new sensor networks that enable faster information sharing 

(Caldwell, 2007, p. 10).   

The defense of ports has improved greatly in the past six years. However, 

disposition of assets is planned on a perceived threat basis. A lot of emphasis is placed on 

thwarting an attack through presence (i.e., assuming the potential attacker can observe 

our defensive preparations and may be dissuaded). 
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C. LITERATURE REVIEW 

We will introduce a bi-level optimization model to position our radars and then 

predict how an intelligent attacker would respond, given these defensive positions are 

visible.  This employs a bilevel mixed-integer linear program (MIP) to express a 

defender-attacker optimization. 

Bard and Moore [1990] introduce techniques to solve a bilevel mixed integer 

linear programming problem. They develop an algorithm that can solve this bilevel MIP 

heuristically.  

Wood [1993] develops a network interdiction model for an enemy who wants to 

maximize flow through a capacitated network; whereas a defender attempts to interdict 

this network and minimize flow with a limited number of defensive assets visible to the 

enemy. The model is applied to anti-drug smuggling operations where the main focus is 

the intercept of chemicals used in drug production.  

Isreali and Wood [2002] describe a shortest-path network interdiction problem 

and formulate it using a bilevel MIP. They introduce efficient decomposition techniques 

to solve such a problem.  

Brown et al. [2006] develop bilevel and trilevel optimization models for the 

defense of critical infrastructure.  They apply these models to many real-world examples 

in order to highlight any vulnerabilities in such infrastructures.  They show the benefits of 

such models in aiding decision makers make appropriate defensive plans.  
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II. SCENARIO DEVELOPMENT 

We anticipate a determined intelligent attacker using speed boats to try to reach 

fixed high-value targets in the maritime domain. We are most interested in a port where, 

for instance, U.S. Navy ships might be anchored or pier-side. The attacker can employ 

several methods of attack, either ramming an explosive ridden boat into the target or 

getting close enough to employ weapons such as a rocket propelled grenade (RPG). The 

attacker’s motivation is to cause maximum effect. That could entail serious damage to 

shipping or infrastructure, or merely as a psychological form of terrorism. Either way we 

consider a single successful initial undetected attack as a failure of the defender. We 

assume transparency in our model in that the enemy can view our defensive 

prepositioning and react accordingly to avoid detection. 

The attacker utilizes a number of small speedboats similar to a 20 foot Baja 

Outlaw Class (Table 1). The defender employs SAFE Defender class patrol (see Table 2) 

boats along with shore radar instillations in order to detect the attacker.  
 

Baja 20’ Outlaw Class 

Length 20'4" - 6.2 m 

Beam 7'10" - 2.39 m 

Weight 2,900 lb - 1,315 kg 

Weight w/ explosives 3,900 lb 

Draft 34" - 86.36 cm 

Fuel Capacity 50 gal - 170.3 L 

Passenger Capacity 6 

Max speed 54.2 knots 

Attack Range w/RPG 200m 

Table 1.   20’ Baja Class Specifications (From: Baja Marine, 2008). 
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SAFE Defender Class 

Length 25’ - 7.62 m 

Beam 8’6” - 2.59 m 

Draft 3’ – 0.91 m 

Fuel Capacity 50 gal - 170.3 L 

Crew 4 

Max Capacity 10 

Max speed 46 knots 

Radar Furuno 4 kW radar 

Range (36 NM) 

Armament Effective Range 

One 12.7 mm machine gun 1500 m 

Capabilities Detect & Intercept 

Table 2.   SAFE Defender Class Patrol Boats (From: SAFE, 2003). 

A. NETWORK REPRESENTATION 

Because we are in the maritime domain, where there are no strict paths or routes, 

we represent our maritime environment using an mesh network. We break down the 

surface into square cells of a given width and generate a node in the middle of each. Each 

cell is connected by an arc to and from every adjacent node (horizontal, vertical, or 

diagonal) unless we specify an obstruction to navigation (see Figures 4 and 5). The 

attacker can traverse any arc between adjacent nodes to reach a goal cell. Each defender 

platform is assigned a cell (node) to occupy, from which he will surveil as much maritime 

domain as possible.  
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Figure 4.   Sample network representation with square cells of constant width, each 
identified by a row and a column index. An attacker can traverse from any 
cell via an arc to any adjacent cell. 

 

Figure 5.   Sample network representation with cells and obstructions. Blackened 
cells are obstructions to navigation, as well as observation. Cells (i02, j02) 
and (i03, j03) are not adjacent. For instance, a defender in the North-West 
cell (i01, j01) cannot detect an attacker in the South-East cell (i05, j05) nor 
any of the grey cells (if any portion of a cell is obscured by an 
intermediate obstruction, we conservatively assume the entire cell is 
obscured).  

B. PROBABILITY OF EVADING DETECTION 

Equations (P1) through (P9) introduce our radar equations used to estimate the 

probability that a defender in one cell can detect an attacker in another one. The relative 

locations of defender and attacker are shown in (P1) and (P2). A defender in some given 

position may not be able to detect an attacker in some other position due to intervening 

obstructions. The following assumes positions with no such obstruction. To achieve the 

resolution we require we assign cell_width  = 0.15 NM (P3). The maximum speed of a 
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Defender class boat is 46 nautical miles per hour (knots) and the cruise speed is 35 knots. 

Therefore, we assign v  = 35 (P4). Each SAFE Defender boat is equipped with a Furuno 4 

kW radar with a maximum range of 36 NM, therefore we assign mr = 36 (P5). For our 

sweep rate in (P8) we assign sr = 0.8 (P6). The range between defender and attacker is 

expressed by (P7). The defender pays a penalty when travelling faster in the form of a 

decreased detection probability. The detection probability (P8) goes to zero once the 

distance between attacker and defender is greater then the maximum radar range. 

We assume the intelligent attacker will want to maximize his probability of 

evasion by traversing a path with the maximum joint probability of evading detection 

while transiting each cell. In (P9), we compute this evasion probability. Assuming cell-

to-cell independence, the joint probability that a path will evade detection is the product 

of the evasion probabilities of each cell traversed. We take the logarithm of this 

expression to render a linear summation of log likelihoods, and note that maximizing the 

sum of these logs is equivalent to maximizing the product of the probabilities. Our simple 

radar equation can be replaced by one with much higher fidelity, [e.g., Skolnik, 1990], 

but for purposes of our exposition this makes no difference at all.  
  

( ) ( )2 2

2 2

( , ) attacker cell (P1)
( , ) defender cell (P2)

cellsidedistance (P3)
defender velocity (P4)
maximum radar range (P5)
searcher sweep rate (P6)

(P7)

1 exp 2

a a

d d

m

a d a d

m
d

i j
i j

cell_width
v
r
sr

x = cell_width* i i j j

r x
P sr

v

− + −

⎛ −
⎜= − −
⎝

2 2

(P8)

exp 2 (P9)m
e

r x
P sr

v

⎞
⎟

⎜ ⎟
⎠

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

Table 3.   Derivation of evasion probability by an attacker located at cell ( , )a ai j from a 
defender at cell ( , )d di j , assuming no intervening obstruction to observation. 
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C. RAY TRACING 

We use ray tracing to determine if an obstacle between a searcher and an attacker 

obscures the attacker.  We assume a ray from searcher p to target a intersects some 

intermediate obstacle x. 

pxr  distance from searcher p to obstacle x [meters]  

xar  distance from obstacle x to attacker a [meters] 

ph  height above surface of searcher p [meters] 

xh  height above surface of obstacle x 

ah  height above surface of attacker a 

In plane geometry, x can be observed if  

p a
x p px

px xa

h h
h h r

r r
⎛ ⎞− +

> + ⎜ ⎟⎜ ⎟+⎝ ⎠
. 

In spherical geometry, we need to define: 

,px xar r  great-circle distances [meters] 

R radius of Earth [ 66.371x10≅ meters] 

/px pxr Rθ =  [radians] 

/xa xar Rθ = [radians] 

palos  straight line of sight from searcher p to attacker a [meters] 

2 2( ) ( ) 2( )( )cos( )pa p a p a px xalos R h R h R h R h θ θ= + + + − + + +  

1sin sin( )a
px xa

pa

R hC
los

θ θ− ⎛ ⎞+
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 

( )pxD Cπ θ= − +  

sin( )( )
sin( )x p

Ch R h R
D

> + − . 
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D. MODEL FORMULATION 

1. The Attacker 

The attacker has a set of speedboats a A∈  that can each choose to enter a 

network at any of a number of entry cells c E∈ , traverse a set of cell-to-cell arcs d D∈  

to reach and exit the network at any of a number of goal cells c G∈  where defended 

assets are located.  Each arc admits a limited number of speed boat traversals arc_cap.  

Traversing each arc carries a risk of detection the attacker cannot control, and the log 

likelihood that an attacker will evade detection while traversing arc d is devX .  The 

attacker seeks attack paths that maximize the log likelihood of evading detection.   

We express the attackers’ planning problem with the model AMAX(evX) . 

Indexes and index sets [~cardinality] 

a A∈   attacker [~5] 

ijc C∈   cells with horizontal, vertical coordinates (alias c1, c2) [~1,000] 

c E C∈ ⊆  cells where an attacker can enter the network [~100] 

c G C∈ ⊆  goal cells with defended assets [~10] 

1, 2c cd D D∈ =  cell adjacencies, or traversal arcs [~8,000] 

Data [units] 

_arc cap  maximum attackers traversing any arc [attackers] 

devX   log of probability that an attacker will evade detection traversing arc d  

  [log likelihood] 

Variables [units] 

cENTER  number of attackers entering network at entry cell c [attackers] 

dY   number of attackers traversing arc d [attackers] 

cGOAL  number of attackers exiting network at goal cell c [attackers] 
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Formulation [dual variables] 

( )max

, 2 1,

( ) max A0

. . | | [ ] (A1)

0 [ ] (A2)

| | [ ] (A3)

0 (A4)
0 _ [ ] (A5)
0 (A6)

d dY d D
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d d
d D d D
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Y Y
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α
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δ

γ

∈

∈
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∈

=
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−

− + ≤ ∀ ∈

− ≤ −

≤ ∀ ∈
≤ ≤ ∀ ∈
≤ ∀ ∈

∑

∑

∑ ∑

∑  

Discussion 

The attackers’ objective (A0) is to maximize the total expected log likelihood that 

attackers traversing arcs from entry cells on paths to goal cells will evade detection (or, 

equivalently, to maximize the joint probability that they evade detection over all the arcs 

they choose to traverse).  Constraint (A1) limits the number of entries into the network 

via entry cells, each constraint (A2) forces conservation of flow at a cell in the network, 

and constraint (A3) limit the number of exits from the network via goal cells.  

Stipulations (A4-6) give bounds on the decision variables.  If the data in (A1), (A3), and 

(A5) is integral, this linear program will produce an intrinsically integral solution Y*. 

2. The Defender 

The defender controls a set of surveillance platforms (e.g., patrol boats, shore 

radar installations, etc.) p P∈  that may each be located at a set of cells pc S∈  to surveil 

arcs in the network.  The log likelihood that an attacker traversing arc d will evade 

detection by defender boat p located in cell c is , ,d p cev .  The defender seeks positions for 

his surveillance platforms to collectively minimize the total log likelihood of attackers 

evading his surveillance.  We express the defender’s problem as follows ˆDMIN(Y) . 
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New indices and index sets [~cardinality] 

p P∈   defending platforms [~5] 

pc S C∈ ⊆  cells where a platform p can be located [~250] 

New data [units] 

, ,d p cev   log likelihood that an attacker traversing arc d would evade detection by  

  defender p in position c [log likelihood] 

d̂Y    number of attackers traversing arc d [attackers] 

Variables [units] 

,p cX   =1 if platform p located in cell c, 0 otherwise [binary] 

Z  total log likelihood of evading detection [log likelihood] 

Formulation 

min ,

, , ,
,

,

,

,
|

,

ˆ( ) min (D0)

ˆ. . (D1)

. . 1 (D2)

1 (D3)

{0,1} , (D4)

X Z

d p c d p c
d D

p P c S

p c
c S

p c
p P c S

p c p

p

p

p

Z Y Z

s t Z ev Y X

s t X p P

X c S

X p P c S

∈
∈ ∈

∈

∈ ∈

=

≥

≤ ∀ ∈

≤ ∀ ∈

∈ ∀ ∈ ∈

∑

∑

∑

 

Discussion 

(D0) introduces the objective, and constraint (D1) defines the objective variable as the 

minimum upper bound on total log likelihood of evasion.  Each constraint (D2) requires a 

defender platform to be located in just one cell, each constraint (D3) allows any cell to be 

occupied by at most one defender, and (D4) stipulates a binary location decision for each 

defender. 
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3. Defender-Attacker Model 

We now consider a realistic case, and a worrisome one.  The defender wishes to 

optimize defensive pre-positioning of surveillance platforms while assuming the attacker 

will observe these preparations and optimize attacks to exploit any weakness in these 

defenses.  The defender’s objective is to minimize the maximum probability of evasion 

by attackers.  We note that this model is a conservative one for the defender because he 

must protect against the worst possible set of attacks.  Moreover, it is conservative for the 

attacker because he must plan against the best possible defense. 

We state the opposing decision as model MINMAX: 

( )

, , ,,
,

,

* min max

. . (A1) (A6) and D1 (D4)

d p c d p cZ X Y d D
p P c S p

Z ev Y X

s t

∈
∈ ∈

=

− −

∑
 

We cannot solve MINMAX with conventional techniques, but if we temporarily 

fix variables Z and X, the result is a capacitated network flow linear program.  Taking the 

dual of this linear program, and freeing Z and X, we achieve an integer linear program 

SAFE-ILP we can solve with conventional techniques. 
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Discussion 

This reformulation uses the variables introduced as duals for the constraints in AMAX. 

The “defender-attacker” two-sided option solves SAFE_ILP to position seen defender 

platforms, recovering the corresponding attack plans by solving AMAX(evX)  with 

variables X fixed at their optimal values, and , , , , ,d p c d p c p cev X=evX . 

4. Decomposition 

SAFE_ILP can be (very) hard to solve at large scale.  Accordingly, we have 

decomposed the SAFE optimization as follows.  We modify ˆDMIN(Y) , replacing 

equation (D1) with a set of constraints (D1D). 

New index 

k K∈   decomposition iteration 

New Data 

k̂Y   attacker plans for iteration k 

ˆDMIND(Y)  formulation 

min ,

. , ,
,

,

ˆ( ) min

ˆ. .
Z X

k
d p c d p c

d D
p P c S p

Z Y Z

s t Z ev Y X
∈

∈ ∈

=

≥ ∑ ,     k=1,…, K    (D1D) 

and constraints (D2)-(D4). 

The complete decomposition algorithm is as follows: 

Algorithm MINMAX 

Input: Data for defense problem, optimality tolerance 0ε ≥ ; 

Output: ε-optimal SAFE location plan *X , and responding attacker plan 
*Y ; 

1. Initialize best upper bound UBZ ←∞ , best lower bound 

LBZ ←−∞ , define the incumbent, null SAFE plan * 1ˆ← ←X X 0  
as the best found so far, and set iteration counter K ← 1; 
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2. Subproblem: Using , , , , ,d p c d p c p cev X=evX , solve subproblem 

AMAX(evX) ) to determine the optimal attack plan ˆ KY  given 
ˆ KX ; the bound on the associated objective is max

ˆ( )KZ X ; 

3. If ( max
ˆ( )K

UBZ Z> X  ) set max
ˆ( )K

UBZ Z← X  and record improved 
incumbent SAFE plan * ˆ K←X X , and responding attacker plan 

* ˆ K←Y Y ; 

4. If ( UB LBZ Z ε− ≤ ) go to End; 

5. Master Problem:  Given attack plans ˆ kY , k=1,…K, attempt to 
solve master problem ˆDMIN(Y)  to determine an optimal defender 
plan 1ˆ K+X .  The bound on the objective is min

ˆ( )Z Y ; 

6. If  min
ˆ( )LBZ Z< Y  set min

ˆ( )LBZ Z← Y ; 

7. If  ( UB LBZ Z ε− ≤ ) go to End; 

8. Set K ← K +1 and go to step (2) (Subproblem); 

9. End:  Print “ *X  is an ε-optimal SAFE solution, and *Y  is the 
attacker response to that plan,” and halt. 

For the sake of efficiency, one need not store incumbent attacker plans *Y  in step 3.  

These can be recovered after-the-fact by computing  *
, , , , ,d p c d p c p cev X=evX  and solving 

AMAX(evX) . 

The advantage here is that the decomposition isolates a large subproblem that is a 

capacitated maximum-flow linear program from the much smaller, and simpler integer 

linear program master problem to locate platforms.  The former problem can be solved 

very quickly with a specialized network simplex algorithm (e.g., Bradley, et al. 1977), 

and the latter can be solved with a local search heuristic.  This offers the opportunity to 

write a customized solver in a programming language without need for licensed 

mathematical modeling language or commercial optimization solver, thus reducing the 

cost per seat from about $8,000 to zero.  
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E. INSTANCES 

We produce several instances that include a generic situation for sensitivity tests 

as well as several real-world ports and maritime assets. Our real-world examples include 

the Port of Los Angeles and Long Beach, Port of Hong Kong, USN Fifth Fleet 

headquarters in Bahrain, and Al Basra Oil Terminal (ABOT) in Iraq. The first two are 

considered mega-ports both of which are an integral part of the international commerce 

network. An attack on either one could critically disrupt international trade causing 

massive delays and ultimately losses of millions of dollars. Bahrain holds strategic 

importance for the United States. The Fifth Fleet includes all naval assets from the Suez 

Canal to the Indian Ocean. ABOT is considered the lifeline of the Iraqi economy. It 

currently accounts for 97% of the Iraqi crude oil exports to the world (United States 

Embassy – Iraq, 2006). As the only major source of funding to the Iraqi government, any 

disruption of operations will hinder rebuilding operations and will be another factor of 

instability in that country.  
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III. RESULTS AND ANALYSIS 

We demonstrate planning methods with our sample of defense surveillance 

problems using different numbers of defenders and numbers of attackers. Each SAFE 

Defender class boat normally operates within ten nautical miles of its home base location 

(USCG, 2004, p. 4ff). 

For each defense planning problem, we evaluate a combination of one-to-four 

attacker boats versus two and four defender boats. We include obstruction masking of 

defender radars, with ray tracing to determine exactly which cells can be seen by a 

defender boat in any particular picket position. The obstruction masking ray tracing is 

very computationally expensive in our mathematical modeling language, but trivial, and 

fast, in a procedural programming language.  We have programmed the ray tracing and 

obstruction geometry separately from the model generation language, thus achieving two 

orders of magnitude speed-up of computation (e.g., ray tracing for a single scenario has 

been reduced from almost two hours to less than a minute). The obstruction masking 

elicits real-world terrorist behavior to hide and evade detection. 

Our model achieves nearly 100% probability of detection for every surveillance 

problem. 

We are dealing with small, fast attack boats, and we want a high-resolution 

maneuver network. We assign cell width to be 0.15 NM. The surveillance problems we 

state fit within a 30 vertical by 35 horizontal cell matrix. The marine domains are about 

4.5 NM by 5.3 NM, or a total surveillance area of about 24 NM2.  

The GAMS modeling language and CPLEX solver (GAMS, 2008) respectively 

generate a problem instance in about a two hours (with almost all of this time spend ray 

tracing for cell-to-cell radar visibility), and a few minutes in CPLEX. Exporting the ray 

tracing reduces the GAMS execution time to less than a minute. 
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CPLEX cannot solve some instances, issuing obscure diagnostics that turn out to 

be due to insufficient random access computer memory. For example, our Los Angeles-

Long Beach DUAL-ILP has (6,799 rows, 3,862 columns, and 18,210,510 nonzero 

elements), overflowing two gigabytes of memory.  

We have employed the Benders Decomposition.  Each Benders decomposition 

subproblem has only 838 rows, 6,016 continuous variables, and 12,032 nonzero 

elements; and each master problem 761 rows, 3,025 binary variables, and 9,073 non-zero 

elements. The decomposition converges to zero decomposition gap in 13 iterations (just a 

few seconds of compute time).  

A. GENERIC SURVEILLANCE PLANNING PROBLEM 

In our generic instance we pose a maritime environment where there are islands 

and obstacles between the attacker and the goal target cells. Table 4 shows the suggested 

positions of each of two defender platforms, and Table 5 for four defenders. We solve 

these instances using decomposition and achieve, at once, a decomposition gap of 0% 

and approximately 100% probability of detection for each instance.  

 
 Defender 1 

Position 

Defender 2 

Position 

One Attacker i01 j27 i27 j01 

Two Attackers i01 j27 i27 j01 

Three Attackers i30 j09 i02 j25 

Four Attackers i30 j09 i02 j25 

Table 4.   Generic instance positioning two defender boats against one-to-four attacker 
boats that attack with prior knowledge of defender positioning and radar 
capabilities. 
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Figure 6.   Generic instance with a single attacker and two SAFE Defender boats. The 
defended goal cells “G” are (i01,j1) and (i01,j02). The SAFE defender 
boats are based at cells “H” (i02,j01) and (i03,j01). Obstacle boundaries 
are shown with “[#]”.  The attacker can enter via any cell on the threat axis 
labeled “E” (the southeast border). Defender boats cannot locate too close 
to goal cells, or their alarm would be of little use, and “.” indicates just 
how close (or where else) they can locate. Here, the defenders are located 
at (i27,j01) and (i01,j26). The lone attacker enters at (i30,j26), and, 
knowing defender positions, uses obstacles as best able to maximize 
probability of evasion, then plans a nearly-direct run at goal cell (i01,j02). 
The attacker probability of evasion is near zero. 
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Figure 7.   Generic instance with two attackers and two SAFE Defender boats. As 
with just one attacker, the defenders still position at (i27,j01) and 
(i01,j26), and the two attackers spread out to use obstructions to influence 
and weaken defender sensing. Recall, our defender positioning is in 
anticipation of a raid of two, and the two attackers know where we are 
pre-positioned. Note how the defender positions maximize the coverage of 
attacker transit cells, and minimize obscuration by obstructions.  
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Figure 8.   Generic instance with three attackers and two SAFE Defender boats. 
Defenders position at (i30,j08) and (i02,j24), the better to observe three 
independent attackers. Compare with the one- and two-attacker cases, and 
you see the defenders adapt to the attackers’ increased degrees of freedom 
to use obstructions. The defenders are positioned to thwart the worst-case 
attack tracks shown, as well as all lesser attack plans not shown. 
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Figure 9.   Generic instance with four attackers and two SAFE Defender boats. 
Optimal defender positions are the same picket locations as for the three-
attacker case.  

 
 Defender 1 Defender 2 Defender 3 Defender 4 

One Attacker i30 j06 i30 j09 i05 j22 i01 j27 

Two Attackers i27 j01 i30 j09 i05 j22 i01 j27 

Three Attackers i21 j08 i30 j21 i24 j08 i01 j27 

Four Attackers i28 j17 i30 j21 i22 j07 i02 j25 

Table 5.   Generic instance four Defender boats optimal positioning against one-to-four 
attacker boats. 
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Figure 10.   Generic instance with a single attacker and four SAFE Defender boats. 
Optimal defender locations are (i30,j5), (i30,j8), (i05,j21) and (i01,j26). 
Once you see this defensive plan, you can intuit why it dominates all 
others, given the attacker can see it too. However, without optimal advice 
such as this, you may not have discovered a plan nearly as effective at 
minimizing the maximum probability the attackers evade our surveillance.  
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Figure 11.   Generic instance with two attackers and four SAFE Defender boats. 
Optimal defender locations are (i27,j01), (i30,j09), (i05,j22) and (i01,j27). 
The defenders positions remains the same as the one-attacker case with 
exception that Defender 1 moves slightly north and west (i30,j06) to (j27, 
j02). 
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Figure 12.   Generic instance with three attackers and four SAFE Defender boats. 
Optimal defender locations are (i30,j03), (i30,j09), (i02,j25) and (i01,j27). 
With the increase of attackers to three, we see the defenders one and three 
slightly reposition themselves for optimal detection. 
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Figure 13.   Generic instance with four attackers and four SAFE Defender boats. 
Optimal defender locations are (i29,j10), (i30,j09), (i05,j22) and (i02,j25). 
In this case we see all the defenders reposition themselves with the 
exception of Defender 2, who remains in the same position for all cases. 
Defenders 1 and 3 exhibit the most drastic repositioning to achieve 
optimal detection. Again, their actions prove not to be intuitive at all.  
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B. PORT OF LOS ANGLES 

 

Figure 14.   Satellite image of Port of Los Angeles (From: Google Earth). 

For the Port of Los Angeles, we demonstrate our model using decomposition with 

either two defenders or four defenders. Subsequently, we try each combination against a 

single attacker and up to four. We can achieve an optimal probability of detection of 1.0 

with all combinations. Optimal placement of the defenders is shown in Table 6 against a 

single attacker and up to four. Figures 15 through 18 illustrate the position of the 

defender boats for each scenario along with the responding optimal attacker paths. We 

observe that when the number of attackers increases to more then two, optimal boat 

positioning drastically changes from a close grouping inside the breakwater to one boat 

inside the breakwater and one at the mouth of the breakwater. 
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 Defender 1 

Position 

Defender 2 

Position 

One Attacker i18 j08 i25 j08 

Two Attackers i19 j08 i24 j08 

Three Attackers i21 j08 i30 j19 

Four Attackers i23 j08 i30 j20 

Table 6.   Port of Los Angeles — Two Defender boats optimal positioning against one 
to four attacker boats. 

 

Figure 15.   Port of Los Angeles instance with a single attacker and two SAFE 
Defender boats. The defended goal cells are (i08,j05) and (i08,j6). The 
SAFE defender boats are based at cells “H” (i06,j02) and (i07,j02). 
Obstacle boundaries are shown with “[#]”, and land-mass with “[X]”. The 
attacker can enter via any cell on the threat axis labeled “E” at the 
southeast border. Defender boats cannot locate too close to goal cells, or 
their alarm would be of little use, and “.” indicates where defender boats 
can be located here, no closer than 1 NM to any goal cell. In this instance, 
the defenders are located at (i25,j08) and (i18,j08). The single attacker 
enters at (i27,j35), and while knowing defender preparations still decides 
to directly attack the goal cell (i08,j05). The attacker probability of 
evasion is near zero. 
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Figure 16.   Port of Los Angles instance with two attackers and two SAFE Defender 
boats. Optimal defender locations are cells (i19,j08) and (i24,j08). The 
defenders move one cell toward each other in order to detect the two 
attacking boats. 
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Figure 17.   Port of Los Angeles instance with three attackers and two SAFE Defender 
boats. Optimal defender locations are cells (i21,j08) and (i30,j19). With 
the increase of the attacker from two to three, defender 1 slightly moves 
two cells south (0.3 NM) while defender 2 is repositioned dramatically to 
the mouth of the breakwater at cell (i30,j19).  
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Figure 18.   Port of Los Angeles instance with four attackers and two SAFE Defender 
boats. Optimal defender locations are cells (i23,j08) and (i30,j20). The 
defender boats only slightly reposition from the case of three attackers to 
maintain a probability of evasion by the enemy at nearly zero. 

When running the Los Angeles instance with four defenders, optimal positioning 

is slightly different with respect to the number of attackers. Table 7 lists the optimal 

positions of the four defender boats against the one-to-four attackers. Against one 

attacker, the defender assignments are all within the breakwater of the port. As the 

number of attackers increases to two and three, one defender is positioned at the entrance 

of the port while the others remain inside (see Figures 20 and 21). With four attackers, we 

can see a split of two at the entry of the breakwater and two within the port waters (see 

Figure 22). 
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 Defender 1 Defender 2 Defender 3 Defender 4 

One Attacker i17 j08 i18 j08 i19 j08 i25 j08 

Two Attackers i22 j07 i23 j08 i24 j08 i29 j22 

Three Attackers i21 j08 i24 j07 i24 j08 i30 j21 

Four Attackers i22 j07 i23 j08 i28 j17 i30 j21 

Table 7.   Port of Los Angles instance – positioning four defender boats against one-to-
four attacker boats that attack with prior knowledge of defender positioning. 

 

Figure 19.   Port of Los Angeles instance with one attacker and four SAFE Defender 
boats. Optimal defender locations are cells (i17,j08), (i18,j08), (i19,j08), 
and (i25,j08). The defenders are positioned in a straight line, with defender 
4 six cells (0.9NM) further from the rest. 
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Figure 20.   Port of Los Angeles instance with two attackers and four SAFE Defender 
boats. Optimal defender locations are cells (i22,j07), (i23,j08), (i24,j08), 
and (i29,j22). An increase of only one attacker invokes a remarkable 
change in defensive positioning. The first three defenders break their line, 
but nonetheless maintain a tight grouping, and the fourth defender is 
placed at the mouth of the breakwater.  
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Figure 21.   Port of Los Angeles instance with three attackers and four SAFE Defender 
boats. Optimal defender locations are cells (i21,j08), (i24,j07), (i24,j08), 
and (i30,j21). The defensive positioning barely changes from the two 
attacker instance. 
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Figure 22.   Port of Los Angeles instance with four attackers and four SAFE Defender 
boats. Optimal defender locations are cells (i22,j07), (i23,j08), (i28,j17), 
and (i30,j21). We observe that as the attackers increase to four, two boats 
are positioned at the mouth of the breakwater and two remain within the 
confines of the port’s waters. 
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C. PORT OF HONG KONG 

 

Figure 23.   Satellite image of the port of Hong Kong (From: Google Earth). 

The port of Hong Kong is one of the busiest in the world and traffic density 

presents a challenge to defenders.  Allowing threat entry cells from the east and west, we 

invoke an unexpected optimal defender positioning.  We demonstrate planning using 

Benders decomposition for one-to-four attackers and two or four picket boats. 
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 Defender 1 

Position 

Defender 2 

Position 

One Attacker i17 j05 i18 j05 

Two Attackers i25 j05 i26 j05 

Three Attackers i25 j05 i26 j05 

Four Attackers i25 j05 i26 j05 

Table 8.   Port of Hong Kong  – positioning two Defender boats against one-to-four 
attacker boats that attack with prior knowledge of defender positioning. 

 

Figure 24.   Port of Hong Kong instance with a single attacker and two SAFE 
Defender boats. The defended goal cells are (i08,j20) and (i09,j20). The 
SAFE defender boats are based at cells “H” (i18,j27) and (i18,j28). 
Obstacle boundaries are shown with “[#]”, and land-mass with “[X]”. The 
attacker can enter via any cell on the threat axis labeled “E”. Defender 
boats cannot locate too close to goal cells, or their alarm would be of little 
use, and “.” indicates possible defender boats can be locations. The two 
defenders are positioned in cells (i17,j05) and (i18,j05) which forces the 
single attacker to enter at cell (i09,j01) to attack the goal cells. However, 
probability of evasion is reduced to near zero. 
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Figure 25.   Port of Hong Kong instance with two attackers and two SAFE Defender 
boats. Optimal positioning of defenders are in cells (i25,j05) and (i26,j05). 
The two defenders shift down eight cells (1.2 NM) as the attackers 
increase from one to two. One optimal attacker enters from the north-west, 
and the other from the south-east. 

  Defender 1 Defender 2 Defender 3 Defender 4 

One attacker i18 j04 i17 j05 i18 j05 i19 j05 

Two attackers i26 j04 i25 j05 i26 j05 i26 j05 

Three attackers i26 j04 i25 j05 i26 j05 i26 j05 

Four attackers i26 j04 i25 j05 i26 j05 i26 j05 

Table 9.   Port of Hong Kong instance – positioning four defender boats against one-to-
four attacker boats that attack with prior knowledge of defender positioning. 
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Figure 26.   Port of Hong Kong instance with a single attacker and four SAFE 
Defender boats. Optimal positioning of defenders are in cells (i18,j04), 
(i17,j05), (i18,j05), and (i19,j05). The defenders maintain a tight grouping 
even as the number of defenders is increased to four. 
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Figure 27.   Port of Hong Kong instance with two attackers and four SAFE Defender 
boats. Optimal positioning of defenders are in cells (i26,j04), (i25,j05), 
(i26,j05), and (i27,j05). The defenders maintain the same tight grouping. 

In the two-defender scenarios the optimal positioning of defensive assets exhibit 

little to no change as the number of attackers increases from two to four attackers. 

Similarly, with the four-defender situations, the positioning of defenders does not change. 

In essence, whether two or four defenders are available, if we anticipate two or more 

attackers, or defensive positioning should remain the same. 
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D. AL BASRA OIL TERMINAL (ABOT) 

 

Figure 28.   Oil tankers taking on fuel at Al Basra Oil Terminal (from: Royal Navy, 
2006). 

The Al Basra Oil Terminal proves the hardest to defend, because it has no 

geographical obstruction between any of the threat entry cells and the goal cells. The goal 

cells on all sides of the terminal mimic the fragile reality of such an offshore structure. 

Even without obstructions between the entry cells and the goal cells, the optimal 

defender-attacker solutions is surprising; we can still optimally position pickets and 

achieve a near 1.0 probability of detection. 

Optimal positioning of two defenders for the ABOT instance is not significantly 

altered whether facing a single attacker or four. Similarly, with four defenders their 

positioning remains relatively the same. However, what proves to be interesting is the 

attacker’s behavior as his number of boats increases. Attackers always enter at the cells 

nearest to the terminal. Against two defenders, the attackers enter from the north first and 

as their numbers increase they enter from both the north and the south. They use the 

target as an obstruction before preceded with a final, direct attack. 
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 Defender 1 

Position 

Defender 2 

Position 

One attacker i16 j33 i18 j35 

Two attackers i16 j33 i18 j35 

Three attackers i16 j33 i18 j35 

Four attackers i16 j33 i18 j35 

Table 10.   ABOT instance positioning two defender boats against one-to-four attacker 
boats that attack with prior knowledge of defender positioning. 

 

Figure 29.   ABOT instance with a single attacker and two SAFE Defender boats. The 
defended goal cells are all sides of the terminal and marked with “G”. The 
SAFE defender boats are based at cells “K”, both a home and goal cells at 
(i17,j17) and (i17,j19). Obstacle boundaries are shown with “[#]”. The 
attacker can enter via any cell on the threat axis labeled “E”. Defender 
boats cannot locate too close to goal cells, or their alarm would be of little 
use, and “.” indicates possible defender boat locations. The two defenders 
are positioned in cells (i16,j33) and (i18,j35) which forces the single 
attacker to enter at cell (i01,j21) to attack the goal cells via an indirect path 
using the target as an obstruction before turning inbound for a direct final 
attack run. Probability of evasion is near zero. 
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Figure 30.   ABOT instance with three attackers and two SAFE Defender boats. The 
two defenders are positioned in cells (i16,j33) and (i18,j33). The defenders 
do not change their positions from the one-attacker plan. 

 Defender 1 Defender 2 Defender 3 Defender 4 

One attacker i15 j33 i16 j33 i18 j31 i18 j32 

Two attackers i15 j33 i16 j33 i18 j31 i18 j32 

Three attackers i15 j33 i16 j33 i18 j32 i18 j33 

Four attackers i15 j33 i16 j33 i18 j32 i18 j34 

Table 11.   ABOT instance positioning four defender boats against one-to-four attacker 
boats that attack with prior knowledge of defender positioning. 

 



 48

 

Figure 31.   ABOT instance with a single attacker and four SAFE Defender boats. The 
four defenders are positioned in cells (i15,j33), (i16,j33), (i18,j31), and 
(i18,j32). The defenders can reduce the probability of evasion to almost 
zero. 

 

 

 

 

 

 



 49

 

Figure 32.   ABOT instance with four attackers and four SAFE Defender boats. The 
four defenders are positioned in cells (i15,j33), (i16,j33), (i18,j32), and 
(i18,j34). Only defender 4 moves one cell to the right to maintain 
optimality. 
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E. U.S. NAVCENT 5TH FLEET – BAHRAIN 

 

Figure 33.   Aerial image of Mina Salman – Bahrain US 5th Fleet Headquarters (from: 
Google Earth). 

Mina Salman’s approaches in Bahrain are very constrained, with only one main 

channel for commercial shipping entering from the south east. However, there are two 

other approaches that small boats can use to enter the port area. In this instance, we allow 

entry cells in both directions to gain insight into the defenders behaviors when faced with 

such a situation. Optimal defenders positions are achievable for all the combinations of 

attackers and defenders with a probability of detection in the neighborhood of 1.0. 
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 Defender 1 

Position 

Defender 2 

Position 

One attacker i16 j15 i17 j15 

Two attackers i16 j15 i17 j15 

Three attackers i16 j15 i16 j18 

Four attackers i16 j15 i17 j15 

Table 12.   Four attacker boats that attack with prior knowledge of defender positioning. 

 

Figure 34.   Bahrain instance with a single attacker and two SAFE Defender boats. The 
defended goal cells “G” are (i20,j09) and (i21,j08). The SAFE defender 
boats are based at cells “H” at cells (i16,j06) and (i17,j07). Obstacle 
boundaries are shown with “[#]”, and land-mass with “[X]”. The attacker 
can enter via any cell on the threat axis labeled “E” at the northwest and 
southeast corners. Defender boats cannot locate too close to goal cells, or 
their alarm would be of little use, and “.” indicates where they can locate. 
Here, the defenders are located at (i16,j15) and (i17,j15). The lone attacker 
enters at (i01,j11) and, while knowing defender positions, uses the coast to 
maximize probability of evasion to attack goal cell (i20,j09). The attacker 
probability of evasion is near zero. 
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 Defender 1 Defender 2 Defender 3 Defender 4 

One attacker i16 j15 i16 j16 i17 j15 i18 j15 

Two attackers i16 j15 i16 j16 i16 j18 i17 j15 

Three attackers i10 j12 i16 j15 i16 j17 i09 j21 

Four attackers i05 j11 i12 j12 i16 j18 i16 j30 

Table 13.   Bahrain instance – positioning four defender boats against one-to-four 
attacker boats that attack with prior knowledge of defender positioning. 

 

Figure 35.   Bahrain instance with a single attacker and four SAFE Defender boats. 
The defenders are optimally located at (i16,j15), (i16,j16), (i17,j15), and 
(i18, j15). They are tightly grouped and achieve an almost zero probability 
of attack evasion.  
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Figure 36.   Bahrain instance with three attackers and four SAFE Defender boats. The 
defenders are located at (i10,j12), (i16,j15), (i16,j17), and (i09,j21). As the 
number of attackers increases to three, we see an interesting optimal 
positioning of defenders. The defenders are more spread out and one 
defender is close to the bridge that the attackers favor for their approach. 
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Figure 37.   Bahrain instance with four attackers and four SAFE Defender boats. The 
defenders are located at (i05,j11), (i12,j12), (i16,j18), and (i16,j30). When 
expecting four attackers the defenders spread out even more to defend 
against both possible threat axes. The first defender locates right under the 
bridge in order to bring the probability of detection to almost 1.0. 

F. GENERIC SURVEILLANCE PLANNING PROBLEM -- POSITIONING A 
SHORE RADAR, PICKET BOATS, AND CONSIDERING ELEVATION 
OF OBSTACLES. 

In our generic instance, we examine the optimal placement of defender boats 

working in conjunction with a shore radar.  We seek to optimally place a shore radar 

given several candidate locations.  We also assign elevation to the shore search radar as 

well as to each obstruction.  Also, we increment boat elevations by the tide level.  This is 

to account for any elevated obstructions, as well as to asses the benefit of elevating a 

sensor over a low-lying one. 
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The behavior observed is very different from our previous instances: the defender 

platforms are optimally placed on the opposite side of the fixed shore radar (see Figure 

38).  Also, the attackers are clearly more concerned with detection by the more powerful 

shore radar than the less capable defender boats. 

 

Figure 38.   Generic instance with four attackers two SAFE Defender boats, and one 
shore based-radar. The defenders are located at (i30,j09) and (i30,j10).  
The shore radar is optimally placed in position (i07, j20).  When expecting 
four attackers the defenders place the shore radar and the defender boats 
on the opposite sides from each other.  The shore radar is placed in the 
north east possible location, while the defender boats are placed in the 
south east.  The attackers choose paths to avoid altogether the side of the 
more powerful shore radar.  In all cases, the probability of detection is 
increased to almost 1.0. 
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IV. CONCLUSION 

We introduce a bi-level “defender-attacker” integer linear program to advise 

optimal pre-positioning of defender surveillance pickets to minimize the maximum 

probability that intelligent attackers, observing our surveillance positions, can evade us. 

In every instance we examine, alert defenders with existing radar can detect 

attacker raids with near 100% probability via their optimal pre-positioning. This is due, in 

part, to the restricted navigational access channels to ports: These are bottlenecks that 

offer effective defense postures against attacker speedboats. Still, our optimization 

sometimes suggests surveillance positions far from the bottlenecks, the better to detect 

stealthy, evading attackers. 

In the real world, exceptional conditions such as stormy sea state may complicate 

our planning, and (fortunately) that of our adversary. Suffice to say, if we can evaluate 

the probability that any surveillance platform, in any environmental state, can detect an 

attacking one, we can optimize our pre-positioning as well or better than anyone with less 

knowledge.  

While detection is desirable, early detection is preferable. We can easily weight 

our objective function to move our surveillance forward to press for early detection, 

perhaps at the expense of overall detection. 

Although we are merely planning for a detection and alert, we would prefer to 

also be able to not just contribute to, but to also participate in interdiction. This poses a 

bi-criterion optimization to detect and interdict. While, in theory, we can pose and solve 

such problems, in reality the attacker speeds exceed those of our defenders, complicating 

both the analysis of and the reality of interdiction. We have opted conservatively to 

detect, and alert shore and defended asset point defenses as best we can. We admire the 

combined detect-interdict problem, but leave it to our successors to solve. 

The interested reader can reproduce all of our experiments from the data shown in 

this document. 



 58

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 59

LIST OF REFERENCES 

Baja Marine. (2008). Baja 20’ Outlaw Specifications. Retrieved February 22, 2008 from 
http://www.bajamarine.com/index.asp?display=brochure&tab=0&modelid=104525. 

Bard. J. and Moore, J. (1990). The Mixed Integer Linear Bi-level Programming Problem, 
Operations Research, 38(5), pp. 911-921. 

Bradley, G.H., Brown, G.G., and Graves, G.W. (1977). Design and Implementation of 
Large-Scale Primal Transshipment Algorithms, Management Science, 24(1), pp. 
1-34. 

Brown, G., Carlyle, M., Salmerón, J. and Wood, K. (2006). “Defending Critical 
Infrastructure,” Interfaces, 36, pp. 530-544. 

Caldwell, S. (2007). Maritime Security: The SAFE Port Act: Status and Implementation 
One Year Later. Testimony before the Committee on Homeland Security and 
Governmental Affairs, U.S. Senate. Retrieved December 7, 2007 from 
https://www.hsdl.org/homesec/docs/gao/nps33-103007-
04.pdf&code=817fa80b0a833c93a10515ee3560896d. 

Carafano, J. (2007). Small Boats, Big Worries: Thwarting Terrorist Attacks from the Sea. 
Backgrounder. Retrieved December 5, 2007 from 
http://www.heritage.org/Research/HomelandDefense/upload/bg_2041.pdf. 

Department of Homeland Security (DHS). (2002). Homeland Security Advisory System – 
Guidance for Federal Departments and Agencies. Retrieved December 4, 2007 
from http://www.dhs.gov/xnews/releases/press_release_0046.shtm. 

Department of Homeland Security (DHS). (2005). The National Strategy for Maritime 
Security. Retrieved December 4, 2007 from 
http://www.dhs.gov/xlibrary/assets/HSPD13_MaritimeSecurityStrategy.pdf.  

Department of Homeland Security (DHS). (2007). Budget-in-Brief: Fiscal Year 2008. 
http://www.dhs.gov/xlibrary/assets/HSPD13_MaritimeSecurityStrategy.pdf. 
(Retrieved December 16, 2007).  

Department of the Navy (DON). (2007). Navy Maritime Domain Awareness Concept. 
Retrieved April 30, 2008 from 
http://www.dhs.gov/xnews/releases/press_release_0046.shtm. 

General Algebraic Modeling System (GAMS). (2008). CPLEX Solver Guide. Retrieved 
June 2, 2008 from http://www.gams.com/solvers/cplex.pdf. 

Google Earth. (2008). Retrieved June 10, 2008 from http://earth.google.com/. 



 60

Isidore, C. (2002). Hope in West Coast Port Talks. CNN. Retrieved December 5, 2007 
from http://money.cnn.com/2002/10/02/news/economy/ports/index.htm.  

Isreali and Wood. (2002). Shortest Path Network Interdiction. 2002 Networks, Vol. 40(2), 
pp. 97–111. 

Jane’s Information Group. (2005). SAFE Boats International. Retrieved January 20, 2008 
from 
http://www8.janes.com/Search/documentView.do?docId=/content1/janesdata/bin
der/jnc/jnc_9537.htm@current&pageSelected=janesReference&keyword=SAFE
%20boats&backPath=http://search.janes.com/Search&Prod_Name=JNC&.  

MI 5 Security Service. (2007). Al Qaida. Retrieved December 4, 2007 from 
http://www.mi5.gov.uk/print/Page33.html.  

Murphy, M. (2006). Maritime threat: tactics and technology of the Sea Tigers. Jane’s 
Intelligence Review. Retrieved February 19, 2008 from 
http://www8.janes.com/Search/documentView.do?docId=/content1/janesdata/mag
s/jir/history/jir2006/jir01489.htm@current&pageSelected=allJanes&keyword=ma
ritime%20threat&backPath=http://search.janes.com/Search&Prod_Name=JIR&. 

National Security Presidential Directive NSPD-41. (2004). Maritime Security Policy. The 
White House, Washington, DC. 

Royal Navy. (2006). Combined Task Force 158 (CTF 158). Retrieved May 16, 2008 
from 
http://www.royalnavy.mod.uk/server?show=nav.00h00400100500700e002&outp
utFormat=print 

SAFE. (2003). Defender Class Operator’s Handbook.  Retrieved March 20, 2008 from 
http://www.defenderclass.com/pages/nigerian%20navy/training/DefenderClassOP
S_small.pdf. 

Skolnik, M.I. (1990). RADAR Handbook (2nd Edition), McGraw-Hill, New York, New 
York. 

The Caltrade Report (2007).  Strike Looms at Ports of Los Angeles, Long Beach. 
Retrieved December 5, 2007 from  
http://www.caltradereport.com/eWebPages/front-page-1184673116.html 

United States Coast Guard (USCG). (2004). Port Security Units Organization Manual. 
Retrieved March 20, 2008 from https://www.hsdl.org/homesec/docs/dod/nps37-
121707-07.pdf&code=817fa80b0a833c93a10515ee3560896d. 

United States Coast Guard (USCG). (2005). Fact File - Maritime Safety and Security 
Teams. Retrieved December 8, 2007 from http://www.uscg.mil/hq/g-
cp/comrel/factfile/Factcards/MSST.htm.  



 61

United States Coast Guard (USCG). (2007a). MARSEC Levels. Retrieved December 8, 
2007. http://www.uscg.mil/safetylevels/whatismarsec.asp. 

United States Coast Guard (USCG). (2007b.) Fact File - Port Security Units. Retrieved 
December 8, 2007. http://www.uscg.mil/hq/g-
cp/comrel/factfile/Factcards/PSUs.html.  

United States Embassy - Iraq. (2006, December 23). Press Release. Retrieved May 20, 
2008 from http://iraq.usembassy.gov/iraq/20061224_basra_oil_termina.html. 



 62

THIS PAGE INTENTIONALLY LEFT BLANK 



 63

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Distinguished Professor Gerald Brown 
Naval Postgraduate School 
Monterey, California 

 
4. Senior Lecturer Jeffrey Kline, CAPT, USN (ret) 

Naval Postgraduate School 
 Monterey, California 

 
 


